Logo du site de mathématiques Calculus Logo du site de mathématiques Calculus
Expression de la somme des n premiers termes des p premiers produits de la suite 1/(k+q) - Calculus


Publié le samedi 10 avril 2021
Modifié le samedi 10 avril 2021 à 00h20
 1 min

Expression de la somme \(\sum_{k=1}^{n} (\prod_{q=0}^{p} (\frac{1}{k+q})) \)

  • Cas particulier où \(p=1\) :

  • On cherche l'expression de la somme :
    \(\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + ... + \frac{1}{n(n+1)}\)
    \(\forall n \in \mathbb{N}*, u_n = \frac{1}{n(n+1)}\)
    \(u_n = \frac{(n+1)-n}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}\)

    \(S_n = u_1 + u_2 + ... + u_n\)
    \(S_n = (\frac{1}{1} - \frac{1}{1+1}) + (\frac{1}{2} - \frac{1}{2+1}) + ... + (\frac{1}{n} - \frac{1}{n+1})\)
    \(S_n = 1 - \frac{1}{n+1} = \frac{n}{n+1}\)

    On a ainsi l'expression de la somme :
    \(\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + ... + \frac{1}{n(n+1)} = \frac{n}{n+1}\)


  • Cas particulier où \(p=2\) :

  • On cherche l'expression de la somme :
    \(\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + ... + \frac{1}{n(n+1)(n+2)}\)
    \(\forall n \in \mathbb{N}*, w_n = \frac{1}{n(n+1)(n+2)} = \frac{(n+2)-n}{n(n+1)(n+2)} \times \frac{1}{2}\)
    \(w_n = \frac{1}{2} [\frac{1}{n(n+2)} - \frac{1}{(n+1)(n+2)}]\)

    \(S_n = w_1 + w_2 + ... + w_n\)

    On utilise la méthode de la somme télescopique :
    \(S_n = \frac{1}{2} [\frac{1}{1(1+1)} - \frac{1}{(1+1)(1+2)}] + \frac{1}{2} [\frac{1}{2(2+1)} - \frac{1}{(2+1)(2+2)}] + ... + \frac{1}{2} [\frac{1}{(n-1)n} - \frac{1}{n(n+1)}] + \frac{1}{2} [\frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)}]\)
    \(S_n = \frac{1}{2} [\frac{1}{2} - \frac{1}{(n+1)(n+2)}]\)
    \(S_n = \frac{1}{4} - \frac{1}{2(n+1)(n+2)} = \frac{(n+1)(n+2)-2}{4(n+1)(n+2)}\)
    \(S_n = \frac{n(n+3)}{4(n+1)(n+2)}\)

    On a ainsi :
    \(\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + ... + \frac{1}{n(n+1)(n+2)}\)
    \(\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{n(n+3)}{4(n+1)(n+2)}\)


  • Démonstration dans le cas général :

  • \(\forall n \in \mathbb{N}*, \forall p \in \mathbb{N}*,\)
    \(v_n = \frac{1}{n \times (n+1) \times ... \times (n+p)}\)
    \(v_n = \frac{(n+p)-n}{n(n+1) \times ... \times (n+p)} \times \frac{1}{p}\)
    \(v_n = \frac{1}{p} \times [\frac{1}{n(n+1) \times ... \times (n+p-1)} - \frac{1}{(n+1) \times (n+2) \times ... \times (n+p)}]\)

    \(S_n = v_1 + v_2 + ... + v_n\)

    On utilise une somme télescopique :
    \(S_n = \frac{1}{p} [\frac{1}{1 \times (1+1) \times ... \times q} - \frac{1}{(1+1)(1+2) \times ... \times (1+p)}] + \frac{1}{p} [\frac{1}{2 \times (2+1) \times ... \times (p+1)} - \frac{1}{(2+1)(2+2) \times ... \times (2+p)}] + ... + \frac{1}{p} [\frac{1}{n \times (n+1) \times ... \times (n+p-1)} - \frac{1}{(n+1)(n+2) \times ... \times (n+p)}]\)
    \(S_n = \frac{1}{p} [\frac{1}{1 \times 2 \times ... \times p} - \frac{1}{(n+1)(n+2) \times ... \times (n+p)}]\)
    \(S_n = \frac{1}{p} [\frac{1}{p!} - \frac{n!}{(n+p)!}]\)
    \(S_n = \frac{1}{p} \times \frac{(n+p)! - p! \times n!}{p! \times (n+p)!}\)

    On a ainsi démontré que :
    \(\sum_{k=1}^{n} (\prod_{q=0}^{p} (\frac{1}{k+q})) = \frac{1}{p} \times \frac{(n+p)! - p! \times n!}{p! \times (n+p)!}\)

    retour vers la liste d'articles